Usage
This page provides an example of how to use the C-ML library to create and train a simple neural network.
Neural Network Training Example
#include <stdio.h>
#include <stdlib.h>
#include "include/Core/training.h"
#include "include/Core/dataset.h"
int main()
{
NeuralNetwork *network = create_neural_network(2);
build_network(network, OPTIMIZER_ADAM, 0.1f, LOSS_MSE, 0.0f, 0.0f);
model_add(network, LAYER_DENSE, ACTIVATION_RELU, 2, 4, 0.0f, 0, 0);
model_add(network, LAYER_DENSE, ACTIVATION_TANH, 4, 4, 0.0f, 0, 0);
model_add(network, LAYER_DENSE, ACTIVATION_SIGMOID, 4, 1, 0.0f, 0, 0);
float X_data[4][2] = {{0.0f, 0.0f}, {0.0f, 1.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}};
float y_data[4][1] = {{0.0f}, {1.0f}, {1.0f}, {1.0f}};
Dataset *dataset = dataset_create();
dataset_load_arrays(dataset, (float *)X_data, (float *)y_data, 4, 2, 1);
summary(network);
train_network(network, dataset, 30);
test_network(network, dataset->X, dataset->y, dataset->num_samples, NULL);
dataset_free(dataset);
free_neural_network(network);
return 0;
}
This example demonstrates how to: - Create a neural network with three dense layers - Use different activation functions (ReLU, Tanh, Sigmoid) - Create and load a dataset - Train the network using the Adam optimizer - Test the network's performance