Skip to content

Optimizers

SGD (Stochastic Gradient Descent)

  • Description: Basic optimizer that updates weights using gradients.
  • Function: float sgd(float x, float y, float lr, float *w, float *b)
  • File: sgd.c

Adam

  • Description: Adaptive optimizer combining momentum and RMSprop.
  • Function: float adam(float x, float y, float lr, float *w, float *b, float *v_w, float *v_b, float *s_w, float *s_b, float beta1, float beta2, float epsilon)
  • File: Adam.c

RMSprop

  • Description: Optimizer that scales learning rates based on recent gradients.
  • Function: float rms_prop(float x, float y, float lr, float *w, float *b, float *cache_w, float *cache_b, float epsilon, float beta)
  • File: RMSprop.c