Implementation Status
Completed Features
1. Activation Functions
- ELU: Exponential Linear Unit with backward pass
- SELU: Scaled Exponential Linear Unit with backward pass
- Swish: x * sigmoid(x) with backward pass
- Mish: x * tanh(softplus(x)) with backward pass
- Hard Swish: x * ReLU6(x + 3) / 6 with backward pass
- Layer Wrappers:
nn_elu(),nn_selu(),nn_swish(),nn_mish(),nn_hard_swish()
Files:
src/autograd/forward_ops.c- Forward implementationssrc/autograd/backward_ops.c- Backward implementationssrc/nn/layers/activations.c- Layer wrappersinclude/nn/layers/activations.h- Headers
2. Tensor Operations
- Concatenate:
tensor_concat(tensors, num_tensors, dim)- Concatenate along dimension - Stack:
tensor_stack(tensors, num_tensors, dim)- Stack along new dimension - Split:
tensor_split(tensor, num_splits, dim, split_sizes)- Split tensor - Gather:
tensor_gather(input, indices, dim)- Gather values using indices - Scatter:
tensor_scatter(input, dim, index, src)- Scatter values at indices
Files:
src/tensor_manipulation.c- Full implementationsinclude/tensor/ops.h- Function declarations
3. Memory Management
- Memory Pools: Pre-allocated memory blocks for faster allocation
- Tensor Pools: Pre-allocated tensors for reuse
- Tensor Reuse: Reuse tensor memory when shapes match
Files:
src/Core/memory_pools.c- Memory pool implementationinclude/Core/memory_pools.h- Memory pool API
4. Optimizers (Previously Completed)
- SGD with Momentum: Momentum buffer implementation
- RMSprop: Root Mean Square Propagation optimizer
- Adagrad: Adaptive Gradient optimizer
- Adam: Adaptive Moment Estimation (already existed)
Files:
src/optim.c- Optimizer implementationsinclude/optim/optimizer.h- Optimizer API
5. Loss Functions (Previously Completed)
- Huber Loss: Smooth L1 loss with backward pass
- KL Divergence: Kullback-Leibler divergence loss with backward pass
Files:
src/autograd/loss_functions.c- Loss function implementationsinclude/autograd/loss_functions.h- Loss function API
6. Layers (Previously Completed)
- LayerNorm: Layer normalization with learnable parameters
Files:
src/nn/layers/layernorm.c- LayerNorm implementationinclude/nn/layers/layernorm.h- LayerNorm API
Recently Completed Features
1. Training Metrics
- Status: ✅ COMPLETE - Fully automatic metrics capture
- Features:
- Automatic Metrics Capture: No manual tracking code needed - metrics captured by default
- Automatic epoch timing: Detected via
optimizer_zero_grad()calls - Training/validation/test metrics tracking:
training_metrics_auto_capture_*()functions - Gradient norm monitoring: Automatic tracking via
optimizer_step()integration - Learning rate tracking: Current learning rate per epoch with scheduler information
- Loss reduction rate: Percentage reduction in loss
- Loss stability: Standard deviation of recent losses
- Early Stopping Support: Track actual vs expected epochs with
training_metrics_mark_early_stop() - LR Scheduler Visualization: Display scheduler type and parameters in UI
- Real-time JSON Export: Continuously updates
training.jsonduring training - Automatic Dataset Evaluation:
training_metrics_evaluate_dataset()for validation/test - Model Architecture Export: Automatic export of model structure to JSON
- Files:
src/Core/training_metrics.c- Full implementation with global state managementinclude/Core/training_metrics.h- Training metrics APIsrc/optim.c- Optimizer integration for automatic metrics capturesrc/autograd/autograd.c- Loss capture viatensor_backward()src/cml.c- Global metrics initialization/cleanup
2. Visualization UI
- Status: ✅ COMPLETE - Enhanced with early stopping and LR scheduling
- Features:
- Interactive training dashboard: Real-time visualization of training metrics
- Computational graph visualization: Visual representation of ops topology
- Model architecture view: Interactive model structure visualization using Cytoscape
- Bias-variance analysis: Plot training, validation, and test metrics together
- Early Stopping Visualization: Badges and icons showing early stopping status
- Dynamic X-Axis: Charts adapt to actual epochs when early stopping occurs
- LR Scheduler Display: Show scheduler type and parameters in metrics panel
- Modern web interface: React-based UI with Vite
- FastAPI backend: Python server for serving JSON data and SSE streams
- Files:
viz-ui/src/- React frontend componentsscripts/fastapi_server.py- Backend API serverscripts/viz.py- Visualization launcher
3. Broadcasting - Enhanced
- Status: COMPLETE - Full NumPy-style implementation
- Features:
- Complete NumPy-style broadcasting rules
- Scalar broadcasting support (0D tensors)
- Multi-shape broadcasting:
broadcast_multi_shapes() - Proper dimension alignment from right to left
- Invalid dimension checking
- Files:
src/autograd/autograd.c- Enhancedcan_broadcast_shapes()andbroadcast_shapes()include/autograd/autograd.h- Addedbroadcast_multi_shapes()
4. Data Augmentation
- Status: ✅ COMPLETE
- Features:
- Random crop:
augment_random_crop() - Random horizontal flip:
augment_random_horizontal_flip() - Random vertical flip:
augment_random_vertical_flip() - Random rotation:
augment_random_rotation() - Color jitter:
augment_color_jitter()(brightness, contrast) - Normalization:
augment_normalize() - Pipeline:
augment_apply()- Apply all augmentations - Files:
src/Core/augmentation.c- Full implementationinclude/Core/augmentation.h- Augmentation API
5. Data Loading
- Status: ✅ COMPLETE - Basic implementation with prefetching support
- Features:
- DataLoader:
dataloader_create(),dataloader_next_batch() - Batch iteration:
dataloader_has_next(),dataloader_reset() - Shuffling support
- Prefetching support (infrastructure ready,
prefetch_factorfield) - Batch callbacks:
on_batch_start(),on_batch_end() - Drop last batch option
- Note: Multi-threading infrastructure is in place (
num_workersfield), but actual threading implementation would require pthreads - Files:
src/Core/dataset.c- DataLoader implementationinclude/Core/dataset.h- DataLoader API
6. Gradient Checkpointing
- Status: ✅ COMPLETE - Basic implementation
- Features:
- Enable/disable checkpointing:
autograd_set_checkpointing() - Checkpoint tensors:
autograd_checkpoint() - Recompute tensors:
autograd_recompute() - Saves computation graph for recomputation
- Note: Full recomputation during backward pass requires integration with autograd engine
- Files:
src/autograd/checkpointing.c- Checkpointing implementationinclude/autograd/checkpointing.h- Checkpointing API
7. Profiling
- Status: ✅ COMPLETE
- Features:
- Timer:
timer_create(),timer_start(),timer_stop() - Profiler:
profiler_create(),profiler_start(),profiler_stop() - Profiling report:
profiler_print_report() - Get total time:
profiler_get_total_time() - Enable/disable:
profiler_set_enabled() - Files:
src/Core/profiling.c- Profiling implementationinclude/Core/profiling.h- Profiling API
8. Examples Build and Training Utilities
- Status: ✅ COMPLETE
- Features:
- Makefile builds example binaries under
build/examples/ - CMake option
BUILD_EXAMPLESbuilds all examples - Example demonstrates automatic metrics capture, early stopping, and LR scheduling
- Centralized Cleanup:
CleanupContextfor resource management - Dataset Splitting:
dataset_split_three()for train/val/test splits - Files:
CMakeLists.txt- Example targetsMakefile- Example build rulesexamples/training_loop_example.c- Training loop with automatic metricsexamples/test.c- Comprehensive training with train/val/test splitsexamples/early_stopping_lr_scheduler.c- Early stopping and LR scheduling exampleinclude/Core/cleanup.h- Centralized cleanup APIsrc/Core/cleanup.c- Cleanup implementation
Implementation Notes
Activation Functions
All activation functions include:
- Forward pass with proper formula
- Backward pass with gradient computation
- Autograd integration
- Layer wrappers for easy use
Tensor Operations
All operations include:
- Shape validation
- Bounds checking
- Proper memory management
- Error handling
Memory Pools
- Pre-allocates memory blocks for faster operations
- Reduces memory fragmentation
- Supports tensor reuse for common shapes
Next Steps
- Complete Broadcasting: Enhance existing implementation with full NumPy rules
- Data Augmentation: Add image/data augmentation functions
- Multi-threading: Add worker threads for data loading
- Prefetching: Preload next batch while processing current
- Gradient Checkpointing: Implement memory-efficient backward pass
- Profiling: Add performance profiling tools